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Abstract
With the continuous miniaturization of electronic devices, quantum-mechan-
ical effects such as tunneling become more effective in many device appli-
cations. In this paper, a numerical simulation tool is developed under a
MATLAB environment to calculate the tunneling probability and current
through an arbitrary potential barrier comparing three different numerical
techniques: the finite difference method, transfer matrix method, and trans-
mission line method. For benchmarking, the tool is applied to many case
studies such as the rectangular single barrier, rectangular double barrier, and
continuous bell-shaped potential barrier, each compared to analytical solutions
and giving the dependence of the error on the number of mesh points. In
addition, a thorough study of the J−V characteristics of MIM and MIIM
diodes, used as rectifiers for rectenna solar cells, is presented and simulations
are compared to experimental results showing satisfactory agreement. On the
undergraduate level, the tool provides a deeper insight for students to compare
numerical techniques used to solve various tunneling problems and helps
students to choose a suitable technique for a certain application.
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1. Introduction

One of the most significant distinctions between classical and modern physics is the tunneling
phenomenon, which is considered an essential effect in quantum mechanics. Tunneling refers
to the transmission of microscopic particles through any arbitrary barrier with energy less than
the barrier height [1–4]. It is usually assumed that the energy of the particle remains constant
during the tunneling process.

There are many applications in modern physics and technology where tunneling plays an
important role. Some applications include molecular biology [5], scanning tunneling
microscopy (STM) [6], and modern electronic devices [7, 8].

Double-barrier structures (DBS) are widely used in various engineering fields [7, 9]. DBS
is the basis of the resonant tunneling diode. The tunneling effect is responsible for the N-
shaped J−V characteristics and the negative differential resistance [10]. Resonant tunneling
through the DBS is also utilized for electromagnetic waves [11].

For simple barriers, analytical expressions may be found in the literature. For instance,
the tunneling probability of a rectangular barrier is a standard illustration in many under-
graduate textbooks [12, 13]. Extensions for double and triple rectangular barriers have been a
subject of thorough study [14]. However, for more complicated structures with multiple
barriers, it becomes very difficult to get analytical solutions. The use of numerical methods
becomes indispensable to get solutions for such structures. One of the most important
approximations used is the Wentzel–Kramers–Brillouin (WKB) method [9]. Unfortunately,
this conventional method used to calculate the transmission coefficient fails, for instance, to
explain the resonance tunneling phenomena. Additionally, it is difficult to calculate the
transmission coefficient in regions where the potential profile changes rapidly which is
encountered in many cases such as heterojunction interfaces. Meanwhile, some numerical
methods have been developed to solve tunneling problems such as the finite difference
method (FDM) [15, 16], transfer matrix method (TMM) [17–20], and transmission line
method (TLM) [21, 22].

A recent application of tunneling is the metal–insulator–metal (MIM) and metal–insu-
lator–insulator–metal (MIIM) diodes used as rectifiers in rectenna solar cells. Solar rectenna is
becoming one of the most promising solar energy converter technologies that could replace
the existing technologies because of its high efficiency at microwave and terahertz fre-
quencies [23]. The rectenna technology is mainly based on a high-frequency antenna to
absorb the desired wavelength of the electromagnetic wave and an ultra-high-speed diode that
rectifies the output of the antenna into DC Because of their ability to rectify at high fre-
quencies, MIM and MIIM diodes have been potential candidates for use in rectennas [8].

Using dielectrics with a low barrier height (typically in the order of ∼0.5 eV) and
relatively thin (typically below 4 nm to keep the tunneling current as the primary transport
[24]) improves the performance of the MIM and MIIM diodes. With low-barrier MIM and
MIIM structures, the WKB approximation is not tailored well [8], so, it is essential to solve
the tunneling problem occurring in such devices more accurately, which can be provided only
by numerical methods. Moreover, it is vital to predict the behavior of MIM and MIIM diodes
before fabrication, which can be attained through the simulation study presented in this work.

In this work, a tool for the numerical calculation of the tunneling probability through an
arbitrary potential barrier using FDM, TMM, and TLM is implemented under a MATLAB
environment. The tool gives a comparison between these three methods and helps to deter-
mine the best method that can be used for the problem at hand. It also gives the error of the
numerical simulation results of many of the known potential barriers compared to analytical
ones and studies the dependence of this error on the mesh size. Moreover, it can be applied to
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calculate the J−V characteristics of MIM and MIIM diodes. A description of the presented
tool is provided in appendix A. In addition, the MATLAB codes are given in appendix B so
as to facilitate the reproduction of the tool. In this regard, the tool can be used as a virtual lab
for teaching quantum tunneling making it easy for students to inspect and visualize numerous
tunneling problems using this tool.

The rest of the paper is organized as follows. In section 2, the formulation of the problem
is presented showing the method of discretization of Schrödinger equation using three
methods: FDM, TMM, and TLM, which are presented in sections 2.1, 2.2, and 2.3,
respectively. This section begins with the basic principles to illustrate the building blocks of
the numerical solver of the Schrödinger equation showing how to calculate tunneling prob-
ability and how to assess the accuracy. It enables students to compare various methods and to
gain insight on how different parameters affect the transmission coefficient. Section 3 begins
with the simulation results of some case studies used for benchmarking. In addition, the
simulation results of MIM and MIIM diodes are analyzed and compared to the experimental
results. This latter part is more suitable for post-graduate students and researchers.

2. Problem formulation and methodology

To solve quantum-tunneling problems considering any arbitrary potential barrier, the
Schrödingerʼs time-independent wave equation inside and outside the barrier is solved. The
solution is performed by transforming the analytical equation into a system of algebraic
equations (in the case of FDM) or into a system of matrix equations (in the case of TMM and
TLM) as will be given in detail in the following sections.

The 1D Schrödinger equation with effective mass approximation including space-
dependent effective mass can be written as [25]

d

dx m

d

dx
E U

2
0, 1

2

*
 y

y+ - =
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

where ÿ is the modified Planck constant, m* is the effective mass of carriers, U is the electric
potential energy, E is carrier energy, and ψ is the electron wave function. ψ, U, and m* are
generally space dependent and, consequently, are all functions of position x.

If the left and right boundaries are assumed to be at equilibrium, with uniform potential
energy, then, the wave functions within these boundaries are considered as plane waves. The
solution starts with assuming a plane wave of unit amplitude, exp(ikLx), is injected from the
left boundary in the positive x-direction. A portion of this wave, rexp(ikLx), is reflected back
to the left boundary in the negative x-direction and another portion is transmitted to the other
side of the solution domain (the right boundary) in the positive x-direction. If both boundaries
are assumed to be perfectly absorbing, then, both boundaries will cause no more reflections,
and consequently, the wave function inside the boundaries can be written as [17]

x ik x r ik x x aexp exp ; 0, 2L L Ly = + - <( ) ( ) ( ) ( )

x t ik x x L bexp ; , 2R Ry = >( ) ( ) ( )

where

k m E U2 . 3L,R L,R L,R* = -( ) ( )

The effective masses mL* and mR*, and potential energies UL and UR are those found
within the left and right boundaries, respectively. For each relevant energy, E, equation (1)
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can be solved for ψ(x) subject to the boundary conditions given by equation (2). Upon
solution, r and t can be found by knowing the values of ψ(x) at x=0 and x=L. The
transmission probability through the barrier at a particular energy E, τ(E), is calculated from
the parameter t using [17]

E t k k , 42
R Lt =( ) ∣ ∣ ( )

with kL and kR given by equation (3).
It should be noted that current conservation reads Ji+Jr=Jt or J J Ji r t- =∣ ∣ ∣ ∣ ∣ ∣, where

Ji, Jr, and Jt are the incident, reflected, and transmitted currents, respectively. Dividing by Ji∣ ∣,
and knowing that the reflection coefficient J Jr i = ∣ ∣ ∣ ∣, and the transmission coefficient

J Jt it = ∣ ∣ ∣ ∣, we can find that 1  t- = . From the previous simple equation, it is evident
that the reflection and transmission coefficients are related, so, it is sufficient to consider one
of them in the calculations.

The numerical solution of the above tunneling problem is usually implemented by the
discretization of the Schrödinger equation. This is accomplished by dividing the domain of
the solution into small regions (mesh elements) in which some approximation for the wave
function is used. The discretization of an arbitrary potential barrier is shown in figure 1. In the
following subsections, the basics of the three discretization methods: FDM, TMM, and TLM
are explained.

2.1. FDM

The most traditional method of discretization of differential equations is the FDM [16]. The
FDM subdivides the simulation domain into small segments which are called mesh elements
(see figure 1). Points that separate these segments are called mesh nodes and the unknown
variables are defined on these nodes. The derivatives in the differential equation to be solved
are replaced by discretized finite difference approximations at each one of the nodes. These
approximations may be derived from a truncated Taylor series. If it is assumed that the
function f (x) is a continuous, single-valued function with continuous derivatives, then, by

Figure 1. The potential energy distribution, U(x), in a barrier extending from x=0 to
x=L, along with the mesh used for discretization.
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Taylor series expansion we have

f x x f x xf x
x

f x
2

, 5
2

+ D = + D ¢ +
D
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( ) ··· ( )

f x x f x xf x
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where Δx is the mesh spacing, which is assumed to be uniform. Truncating each of the above
series after the third term, and solving the resulting two equations for f x¢( ) and f x ( ), we get
the central finite difference approximations [26]

f x
f x x f x

x
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Equations (7) and (8) are the cornerstone of FDM. Applying FDM discretization to the
Schrödinger equation, we divide the domain into N − 1 segments with mesh nodes from 1–N.
It should be noted that node 1 is at the interface between the left boundary region and the
solution domain. Similarly, node N is located at the interface between the right boundary
region and the solution domain. Taking the meshing spacing Δx as a, and using equations (7)
and (8), we have for any node i,

d
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d
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, , 9
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and the Schrödinger equation is written in a discretized form as

E U 0, 11i i i i i i i i1 1 1 1h y h h y h y+ - - + + =- - - +[ ( )] ( )

where a m2i i
2 2 *h = ( ) and 1�i�N. The boundary conditions are incorporated in the

equations of node 1 and node N using equations (2a) and (2b), respectively. Substituting
x=0 and x=−a in equation (2a), we get

r a0 1 , 12L 1y y= = +( ) ( )

a ik a r ik a bexp exp . 12L L L0y y- = = - +( ) ( ) ( ) ( )

When writing equation (11) at node 1, ψ 0 can be substituted in terms of ψ 1 by eliminating r
from equation (12). In a similar approach, substituting x=L and x=L+a in equation (2b),
we get

L t ik L aexp , 13R N Ry y= =( ) ( ) ( )

L a t ik L a bexp . 13R N R1y y+ = = ++( ) ( ( )) ( )

Then, when writing equation (11) at node N, ψ N+1 can be substituted in terms of ψ N by
eliminating t from equation (13). On eliminating r and t, the equations for nodal points 1 and
N are given respectively as

ik a E U i k a aexp 2 sin , 141 L 1 1 L 1 1 2 L Lh h h y h y h+ - - + + =[ ( ) ( )] ( ) ( )
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E U ik a bexp 0, 14N N N N N1 1 1 R R Rh y h h h y+ - - + + =- - -[ ( ) ( )] ( )

where η L and η R are the values of the parameter η in the left and right boundary regions,
respectively. The system of equations (11) and (14) are solved for the wave function values ψ i

at all nodal points including the boundary points. The parameters r and t can then be found
from equation (2). Then, the transmission probability is calculated using equation (4). The
above procedure is repeated for all relevant energy values to get the transmission probability
at all energies. The MATLAB code of the method is given in appendix B.

2.2. TMM

The TMM is a widely used method for quantum device simulation [17–20, 27]. The TMM is
based on the assumption that particles enter and exit the system as continuous streams
(beams) with amplitudes given by the fixed boundary conditions. The TMM provides efficient
simulation of a wide range of structures due to its fast implementation and accurate
results [19].

In the TMM, the channel is again divided into small segments of width, a, and the
potential within each segment is assumed constant as in the FDM. However, in the TMM, the
wave function within each segment n is approximated as a plane wave solution [28],

x A x B xexp exp , 15n n n n ny a a= + -( ) ( ) ( ) ( )

where

m U E2 , 16n n n* a = -( ) ( )

where mn* and Un are the effective mass and potential energy at segment n, respectively.

Applying the continuity conditions of ψn(x) and d

dx m
n

n*
y( ) between each two successive

segments, we get a series of matrix equations relating An and Bn of any segment with those of
the preceding segment An−1 and Bn−1 as follows:

A
B

n n n n
A
B

M M1, , , 17n

n

n

n

1

1

1= --

-

-
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

where

n l
x x

x xM ,
exp exp

exp exp , 18
n l n l

m n l m n l
n

n

n

n* *

a a
a a=

-
- -a a

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( )
( ) ( ) ( )

with xm = (l−1)a; m = 1, 2, ... , N cascading all equations relating coefficients of successive
segments, we can relate the coefficients of the left boundary to that of the right boundary. This
leads to

r
tW1
0

. 19=⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥ ( )

The matrix W is given by

N NW M M0, 1 , , 201 P= - ( ) · · ( ) ( )

where

aM 0, 1
1 1

, 21
m m

L

L

L

L* *
= -a a

⎡
⎣⎢

⎤
⎦⎥( ) ( )

Eur. J. Phys. 39 (2018) 045402 T M Abdolkader et al

6



N N bM ,
exp L exp L

exp L exp L , 21
m m

R R

R R
R

R

R

R* *

a a
a a=

-
- -a a

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( ) ( )
( ) ( ) ( )

cP P P , 21N1 2 1P = ¼ - ( )

where

n n n nP M M, , 1 . 22n
1= +-( ) ( ) ( )

The definitions of α L, R are similar to kL, R in equation (3); m U E2L,R L,R L,R* a = -( ) .
According to equation (19), r and t can be found in terms of the matrix elements ofW defined
in equation (20) as follows:

r tW W Wand 1 2321 11 11= = ( )
Once r and t are known, all the coefficients An and Bn, and thus the wave function, ψn(x),

can be found from equation (15). The solution is repeated at different energies in the specified
range. The MATLAB code of the method is presented in appendix B.

2.3. TLM

The tunneling probability can be calculated using the analogy between the tunneling barrier
and a lossy transmission line. The method is simple and provides an accurate representation to
analyze various tunneling problems. Figure 2(a) shows a lossy transmission line terminated in
a load impedance ZL. The length of the transmission line is ℓ along the x-direction. The
propagation constant γ=α+jβ is complex. The total current and voltage on the line at any
distance x can be written as a sum of incident and reflected waves as follows [22]:

I x I x x aexp exp , 24o g g= - G -+( ) [ ( ) ( )] ( )

x I Z x x bexp exp , 24o o g g= + G -+( ) [ ( ) ( )] ( )

where Zo is the characteristics impedance, Io
+ is the incident current amplitude referenced at

x=0, and γ is the reflection coefficient of the load. The total voltage and current at the load
are related to the load impedance (at x=0). So, we have

Z
V

I
Z

0

0

1

1
. 25L o= =

+ G
- G

( )
( )

( )
( )

( )

Then, the reflection coefficient can be extracted as

Figure 2. Analogy between (a) a lossy transmission line terminated in an impedance ZL
and (b) a potential step.
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Z Z

Z Z
. 26L o

L o
G =

-
+

( )

The input impedance Zin at a distance ℓ from the load is

Z
V ℓ

I ℓ
Z

Z Z ℓ

Z Z ℓ

tanh

tanh
. 27o

L o

o L
in

g
g

=
-
-

=
-
-

( )
( )

( )
( )

( )

To define the quantum-mechanical impedance, let us inspect the propagation of an electron
through the boundary between two regions, 1 and 2, across the potential step shown in
figure 2(b). Let us assume that an electron energy E is less than the potential height at region
2. In general, the wave function can be written as

x A x xexp exp , 28y g r g= - -+( ) [ ( ) ( )] ( )

where j j E Vm2
2

*


g a b= + = -( ) ; m* is the effective mass and ρ is the wave amplitude
reflection coefficient. Accordingly, for the potential step, the wave functions in the two
regions can be written as

x A x x x aexp exp , 0, 291 1 1 1y g r g= - - <+( ) [ ( ) ( )] ( )

x A x x bexp , 0, 292 2 2y g= >+( ) ( ) ( )

where j E Vi
m

i
2 i

2

*


g = -( ) . Applying the boundary conditions

a0 0 , 301 2y y=( ) ( ) ( )

m

d

dx m

d

dx
b

1 1
, 30

x x1

1

0 2

2

0* *
y y

=
= =

( )

we can get an expression for ρ as

m m

m m
. 312 2 1 1

2 2 1 1

* *

* *
r

g g
g g

=
-
+

( ) ( )
( ) ( )

( )

Now, we define a function j(x) as [22]

x
jm

d

dx
A Z x xexp exp , 32o

*


j
y

g r g= = + -+( ) [ ( ) ( )] ( )

where

Z
jm

. 33o
*
g

= ( )

If we compare the equations for ψ (equation (28)) and j (equation (32)) on one side, and
the equations for the current I (equation (24a)) and voltage V (equation (24b)) of a trans-
mission line, on the other side, we can see the analogy between them. Consequently, Zo
(given by equation (33)) can be regarded as the characteristic impedance of an analogous
transmission line.

To complete this analogy, the ratio of j and ψ is analogous to the ratio of voltage and
current which represents the impedance at any point along the transmission line. Then, at any
distance x, we define the quantum-mechanical wave impedance as

Z x
x

x
. 34

j
y

=( ) ( )
( )

( )
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Thus, finally, the input impedance Zin (= Z(−ℓ)) can be expressed in terms of
ZL (= Z(0)),

Z Z
Z Z ℓ

Z Z ℓ

tanh

tanh
. 35o

L o

o L
in

g
g

=
-
-

( )
( )

( )

Table 1 shows the analogous quantities of both the transmission line and quantum
mechanics analyses.

The methodology for the calculation of the transmission probability using the TLM is
illustrated as follows. Regarding the barrier shown in figure 1, the values of γ and Zo are
calculated, for a given energy E, using constant values for m* and U in each region (segment),
noting that the total number of segments is N+1 as shown. The load ZL is represented by the
characteristic impedance seen from the rightmost section (segment N+1). This means that
ZL=Zo, N+1. Next, when looking at point N−1, the input impedance (ZN−1) is calculated
using the previously calculated value of ZL with Zo = Zo, N and ℓ=a. Similarly, the input
impedance ZN−2 is calculated using ZN−1 as the load impedance. The process is repeated until
the leftmost section is reached (at point 1).

The reflection coefficient ρ for the overall barrier is computed using Zo,1 as the char-
acteristic impedance and Z1 as the load impedance. The quantum-mechanical transmission
probability, T(E), is then given by

T E E1 . 362r= -( ) ∣ ( )∣ ( )

The MATLAB code of the method, along with the previous two methods, is presented in
appendix B.

3. Results and discussion

The tool could be used to explore a collection of case studies including abruptly changing
barriers and continuously changing barriers. In the first case, it will be shown that the TMM
and TLM will give more accurate results than the FDM, while in the second case, the FDM is
more accurate. The essential difference between the FDM on one side and the TMM and
TLM on the other side is that the FDM assumes, in each segment, a linear variation of both
potential energy and wave function. On the other hand, the TMM and TLM assume, in each
segment, assumes a constant potential energy and a sinusoidal/exponential variation for the
wave function. Consequently, for the cases of continuously changing potential energy, the
FDM will be superior to other methods as the assumption of staircase potential in the TMM
and TLM will be far from the real case. Meanwhile, in abruptly changing potential barriers
that may result in a rapidly changing wave function (especially encountered at high energy

Table 1. Analogy between the transmission line and quantum mechanics.

Transmission line Quantum mechanics

I(x) xy ( )
V(x) x

jm

d

dx*
j = y( )

j R j L G j Cg a b w w= + = + +( )( ) j j E Vm2
2
*


g a b= + = -( )

Zo G j C

R j L

G j C
= =g

w
w
w+

+
+

Z E Vo jm m

2
* *
= = -g ( )

Z Zo
Z Z ℓ

Z Z ℓin
tanh

tanh
L o

o L
= g

g
-
-

( )
( )

Z Zo
Z Z ℓ

Z Z ℓin
tanh

tanh
L o

o L
= g

g
-
-

( )
( )
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levels), the TMM and TLM will be more accurate as the wave function in such cases will be
far from linearity as assumed by the FDM.

In the first subsection, three case studies, including a rectangular barrier, a bell-shaped
potential barrier, and a double barrier composed of a GaAs region sandwiched between two
AlAs regions, are presented. The results verify the validity of the tool and effectiveness of
each specific discretization method in the simulation of various tunneling phenomena.
Moreover, in the second subsection, practical applications for the MIM and MIIM diodes are
provided, and the J−V characteristics are compared with experimental results.

3.1. Benchmarking

Here, we provide three case studies for the validation of the presented numerical tool. The
case studies used are the rectangular barrier, bell-shaped barrier, and double barrier. The types
of barriers under study are shown in figure 3.

For a given number of segments N, the accuracy of a particular method is measured by
the error function f (N) [29], which is equal to the norm of difference between the numerical
value TN(E) and the exact value Texact(E) of the tunneling probability, i.e.

f N T E T T E Tmax . 37N

E

N
exact exact= - = - ( ) ( ) ∣ ( ) ∣ ( )

This function is used as an error measure for the presented methods.

Figure 3. Case studies used for benchmarking. (a) A rectangular barrier composed of
AlGaAs sandwiched between two GaAs layers, (b) bell-shaped potential barrier of
maximum height Uo and (c) a double rectangular barrier composed of a GaAs region
sandwiched between two AlAs regions.
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Firstly, we consider the simple case of a rectangular barrier case illustrated in figure 3(a).
In this case, the barrier consists of an Al0.5Ga0.5As region embedded between two GaAs
boundary regions. The barrier height is Uo=0.375 eV with an effective mass of
m* = 0.1085 m0 and thickness L=6 nm. The effective mass of the boundary regions (GaAs)
is m 0.067* = m0. The corresponding transmission probability for the FDM, TMM, and TLM
along with the exact analytical solution is shown in figure 4(a) for a number of mesh
points N=50.

It should be noted that the number of segments used in these simulations does not affect
the TMM and TLM results as the error for these methods is independent of N (the TMM and
TLM give almost the exact solution for N = 2 with a round-off error of f (N) = 3×10−15).
On the other hand, the simulations for the FDM give a noticeable error when compared to the
analytical solution with the accuracy increasing with increasing N. Figure 4(b) shows the error
function f (N) for the FDM case, in which, f (N) cannot be lowered below 10−3 even for N
exceeding 1000.

Next, we consider continuously changing potential barriers, which is called the Pöschl–
Teller modified barrier [29], given by the equation

U x
U

xcosh
. 38o

2 a
=( )

( )
( )

Figure 3(b) shows the shape of such barrier. Two values of maximum potential energy
Uo=0.1 eV and 0.5 eV are considered. For either case, the transmission probability is cal-
culated using the three methods, FDM, TMM and TLM with N=100. The results are given
in figure 5(a) along with the exact analytical results as found in [30].

In figure 5(b), the f (N) for the two cases with Uo=0.5 and Uo=0.1 eV is shown. It can
be seen that the accuracy in the lower barrier potential case is better than that of the higher
potential. Also, it is evident that the FDM solutions are more accurate than the other two
methods.

A simple example which illustrates the resonance tunneling phenomena gives a unity
transmission probability for particle energy E>Uo and is the double rectangular potential

Figure 4. (a) Tunneling probability for the rectangular potential barrier with N = 50,
(b) error analysis using the norm function f (N) for the rectangular potential barrier for
the case of the FDM.
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barrier sketched in figure 3(c) similar to the case study in [20]. For each barrier, the barrier
width is 3 nm, the well width is 10 nm, and the barrier energy is 0.956 eV.

Simulations are performed for two values of N=17 and N=97 and are shown in
figures 6(a) and (b), respectively. There are sharp maxima below 1 eV which can be inter-
preted as quasi-bound states with narrow energetic bandwidth through which electrons can
tunnel.

As can be depicted, from figure 6, the number of segments used does not affect the TMM
and TLM results, while the simulations for the FDM give a noticeable error when compared
to the analytical solution. Figure 7 shows the error function f (N) for the FDM case, in which

Figure 5. (a) Tunneling probability for the bell-shaped potential barrier for the two
values of maximum potential energy Uo=0.1 V, and Uo=0.5 V, both with N=100.
The exact solution is also shown for comparison. (b) Error analysis using the norm
function f (N) for the bell-shaped potential barrier.

Figure 6. Tunneling probability for the rectangular double potential barrier with
(a) N=17 and (b) N=97.
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f (N) cannot be lowered below 10−2 even for high values of N. Moreover, it can be depicted
that at large values of N, the discretization error is decreased as expected but, because of the
increased number of calculations, a floating point error starts to dominate and the total error
slightly increases.

3.2. MIM and MIIM diodes

MIM diodes are attractive rectifying devices for electronics and energy harvesting applica-
tions which are based on tunneling through an insulator layer sandwiched between two metal
contacts [31]. The MIM diode used here as a case study (see figure 8(a)) has the following
characteristics: NbN is used as the left metal electrode, while Nb is used for the right metal
electrode, which, from the experimental point of view, can quickly form a native oxide layer
(Nb O2 5) without forming an unintended interfacial layer. A single 2nm Nb O2 5 layer is
assumed according to the experimental results [32]. The work functions of NbN and Nb are
4.7 eV and 4.33 eV, respectively. The electron affinity of Nb O2 5 is 4.23 eV while its dielectric
constant is 25. In the simulations, the Fermi level energy (at the left of the MIM) is assumed
to be EF = 10 eV.

Firstly, the transmission probability of the diode under test is calculated for the TMM
(which gives the same results as the TLM). The calculated results are compared to the
quantum transmitting boundary method (QTBM) [33] as shown in figure 9. The comparison
indicates the effect of the image force. It can be concluded here that the inclusion of the image
force is necessary when dealing with such small thicknesses encountered in rectenna diode
rectifiers.

Figure 10 shows the comparison of the FDM and TMM in the case of an applied forward
voltage of V=0.3 V for different values of N. It can be verified that the FDM is more
advantageous for barriers of continuous distribution as stated above.

Figure 7. Error analysis using the norm function f (N) for the double rectangular
potential barriers for the case of the FDM.
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Finally, the current densities of the FDM, using N=100, are calculated and compared
with the fabricated MIM diode to validate our simulations. The current is calculated based on
the Simmons tunneling model which is valid for MIM structures [34],

J V
m e

h
T E dE f E f E dE

4
eV , 39o

x x
E3 0

L R
x

ò ò
p

= - +
¥ ¥

( ) ( ) [ ( ) ( )] ( )

where fL and fR are the Fermi–Dirac distribution functions on the left and right metal
electrodes, respectively. They are given by

Figure 8. Energy band diagram for the three case studies used in this work:
(a) NbN Nb O Nb2 5- - MIM diode, (b) Co Co O TiO Ti3 4 2- - - MIIM diode, and
(c) Al Ta O Al O Cr2 5 2 3- - - MIIM diode.

Figure 9. Tunneling probability for an MIM diode showing the effect of image force.
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The results of comparing the FDM with the experimental data are presented in figure 11.
Two cases are considered: the first case is when the insulator thickness is 2 nm, while in the
other case the width is 1.8 nm. It is clear that the results of both cases match well with the
experimental data.

An MIIM diode having two insulators with different affinities has superior diode char-
acteristics such as large responsivity, asymmetry, nonlinearity, and high-speed operation
compared to the MIM diode [35]. Tunneling through MIIM structures has two mechanisms:
(1) step tunneling which occurs when the metal Fermi level aligns with the conduction band
of the lower barrier, consequently, the tunnel distance decreases abruptly, (2) resonant tun-
neling which occurs due to allowed bound states arising in a quantum well formed between
the two barriers. When an allowed energy level in the quantum well aligns with the metal
Fermi level, a sharp turn-on of the rectifier occurs. The choice of insulator materials, metal
work functions, and oxide thicknesses determines the dominant mechanism [35]. With small
barrier offsets, step tunneling is the dominant mechanism, while for large barrier offsets,
resonant tunneling is more effective.

The first MIIM structure to be studied in this work (see figure 8(b)) consists of a Co
metal layer used as a left contact, Co O3 4 insulator (with a dielectric constant of 13)
followed by a TiO2 insulator (with a dielectric constant of 15) and a Ti metal layer used as
the right contact [36]. The metal work functions used are 4.8 and 4.5eV for the Co and Ti,

Figure 10. Tunneling probability for an MIM diode for V=0.3 V using the TMM
and FDM.
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respectively [34]. The second MIIM structure is based on an Al O TiO2 3 2- system (the
dielectric constant of Al O2 3 is 20 while that of TiO2 is 10) (see figure 8(c)), for which, the
left metal is Al and the right metal is Cr with work functions 4.28 and 4.5eV, respectively
[31]. The first MIIM structure illustrates the step tunneling phenomena, while the other
shows the resonance tunneling behavior. The difference between the step tunneling and
resonance tunneling can be visualized by observing the transmission probability versus
energy as explained hereinafter.

Figure 12 shows the tunneling probability in the first MIIM structure at two different
voltages 0.3 and 0.5 V. It can be seen from the figure that at both voltages the dominant
tunneling mechanism is step tunneling as there is no opportunity for resonance tunneling to
occur even for higher voltages. The step tunneling behavior is reflected on the J−V char-
acteristics. The simulated J−V characteristics along with the experimental results are shown
in figure 13. The best fit with the experimental results is obtained for affinities of 4.55 and
4.27 eV for the Co O3 4 and TiO2 insulators, respectively, which is close to the reported
values [36].

The quantum well between the two oxide layers of the MIIM becomes deeper by
increasing the thickness of the oxide with a higher dielectric constant [31]. If a relatively
high potential is applied to the right electrode, bound states may exist that support reso-
nance tunneling. This can be seen in the second MIIM structure where resonance tunneling
is observed clearly as indicated in figure 14. The figure shows the tunneling probability for
two cases: at V≈0.3 V (figure 14(a)) and V≈0.7 V (figure 14(b)). Also, two oxide
(Ta O2 5) thicknesses are studied. It can be observed that when the oxide thickness increases,
the quantum well becomes deeper leading to more bound states. When the bound state
energy matches one of the states neighboring the Fermi level on the left side, resonance is
maximum.

Figure 11. Current density versus applied voltage for fabricated MIM diodes compared
with simulation results of FDM using N = 100.
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If a potential of 0.3 V is applied, a bound state appears for an oxide thickness
of 4 nm that is near the Fermi level. Meanwhile, the bound state appearing for the case of
3 nm is still far from the Fermi level at that bias voltage. Therefore, resonance will

Figure 12. Transmission probability versus energy for the Co Co O TiO Ti3 4 2- - -
MIIM system for two different voltages.

Figure 13. Simulated current density versus applied voltage along with the
experimental values for the step tunneling MIIM diode.
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occur only for the higher oxide thickness. Moreover, for a potential of 0.7 V, there are two
bound states (appearing as resonance peaks in the transmission probability as indicated in
the figure) corresponding to the higher oxide thickness. One of these bound states is very
close to the Fermi level leading to enhanced resonance tunneling. On the other hand, for
the lower oxide thickness, there is only one bound state and resonance tunneling will be
less effective. From the previous discussion, it can be predicted that the higher oxide

Figure 14. Transmission probability versus energy for the Al Ta O Al O Cr2 5 2 3- - -
MIIM system structures: one with Ta O2 5 insulator thickness L1 = 4 nm and the other
for L1 = 3 nm at (a) V = 0.3 V and (b) V = 0.7 V.

Figure 15. Simulated current density versus applied voltage along with the
experimental values for the resonance tunneling MIIM diode.
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thickness case will give abrupt currents at lower voltages than the lower oxide thick-
ness case.

The simulated J−V characteristics along with the experimental results are shown in
figure 15. The best fit with the experimental results is obtained for affinities of 3.84 eV for
Al O2 3, and 1.6 eV for TiO2. The current in the case of L=4 nm starts to increase more
steeply above V≈0.3 V, while it attains this steepness near V≈0.6 V in the case of
L=3 nm. These results are in accordance with the simulated tunneling probability presented
above.

4. Conclusion

A numerical simulation tool is developed for the calculation of the transmission probability
through any arbitrary potential barrier. The tool is built under a MATLAB environment and
incorporates three different discretization methods: FDM, TMM, and TLM. The developed
tool is verified by comparing the simulated tunneling probabilities with exact analytical ones
for some case studies. It was found that for the cases in which the potential energy changes
steeply, the FDM is superior to the other methods as the assumption of staircase potential in
the TMM and TLM will be far from the real case. On the other hand, in such cases that may
result in a rapidly changing wave function, the TMM and TLM are more accurate as the wave
function in such situations will be far from linearity as assumed by the FDM.

Moreover, the tool could be used in the design of the MIM and MIIM diodes encountered
in rectenna solar cells by selecting suitable barrier heights and lengths to get the desirable
characteristics. The presented work provides undergraduate and post-graduate students with
some physical insights into tunneling problems and how to apply numerical methods effec-
tively to study recent tunneling devices.
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Appendix A. Tool description

The interface of the developed tool is made user friendly to facilitate changing various
parameters such as the analysis type, solution methods, and, physical parameters of the
structure at hand. The main menu is shown in figure A1. In this menu, the user can choose
one of three analysis types: (1) transmission probability, (2) error analysis, and (3) I−V
characteristics. In the first analysis type, the transmission probability (T(E)) is plotted
versus energy for a certain specified number of mesh points (N). On the other hand, in the
second analysis type, the error in transmission probability with respect to the exact ana-
lytical solution is plotted versus N at a certain specified energy E. The second analysis type
can be chosen only for those structures for which the analytical solution is available.
Regarding the last analysis type, I−V characteristics are plotted for MIM or MIIM
structures in a predefined voltage range.

In the main menu, the user can also specify the solution method whether it be the FDM,
TMM, or TLM. More than one method can be chosen at the same time if a comparison of
different methods is needed.
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If the user chooses the first analysis method, the menu shown in figure A2(a) will appear. In
this menu the user can specify the temperature, minimum energy, maximum energy, energy step,
and the number of mesh nodes. After that, a menu for choosing the type of structure to be
simulated appears (see figure A2(b)). The tool handles seven different structures: (1) rectangular
barrier, (2) trapezoidal barrier, (3) parabolic well, (4) double rectangular barrier, (5) bell-shaped
barrier, (6) MIM diode, and (7) MIIM diode. Upon choosing one of these structures, a sub-
sequent menu appears for entering the parameters of this specified structure.

In the main menu, if the user chooses the error analysis type, the menu shown in
figure A2(c) appears. In this menu the user specifies the energy at which error is calculated
and the range of N for which error is plotted as well as the temperature.

On the other hand, in the main menu, if the user chooses the I−V characteristics, the
menu shown in figure A2(d) appears. In this menu the user specifies the voltage range as well
as the temperature and number of mesh points. After that a menu for either the MIM or MIIM
parameters appears (figure A3).

Figure A2. (a) Menu for choosing T(E) plot, (b) menu for choosing the type of
structure, (c) menu for choosing the error analysis parameters, and (d) menu for
choosing the I−V parameters.

Figure A1. Main menu of the program. The user specifies the analysis type and one or
more solution methods.
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Appendix B. MATLAB codes

In this appendix the MATLAB code is given for the calculation of the tunneling probability
using the three methods: FDM, TMM, and TLM preceded by the definitions of the variables
and constants used in the code (sorted in alphabetical order).

B.1. Definitions

alfa__L the wave number at the left boundary [nm-1].
alfa__R the wave number at the right boundary [nm-1].
E the energy vector [eV]
E__ref__R the reference energy at the right contact [eV].
hbar the modified Planck constant=1.0545e-34 [J.sec].
meff__B the effective mass in the boundary region [Kg].
meff__mid the effective mass vector [Kg].
NE the number of energy values used.
Np the number of nodal points in the simulated domain.
Ns the number of segments in the simulated domain.
q the electronic charge = 1.60218e-19 [C].
Ub the potential energy vector at nodal points [eV].
UB the potential energy vector at the middle of segments [eV].
w the width of each segment in the mesh [nm].

Figure A3. Menu for MIM diode parameters.
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B.2. FDM Code

function [T]=Tunneling__FDM
Np=Ns + 1;
mm=[meff__B;meff__mid;meff__B];
tt=(hbar2̂)./(2*mm*1e-18*ŵ2*q); %tt is multiplied by 1e-18 to transform from nm-2 to m-2 and
divided by q to transform from J to eV

B=zeros(Np,1); %constant vector for solving Schrodinger eq.
for i=1:NE
H=diag(E(i)- Ub - (tt(1:end-1) + tt(2:end))) + diag(tt(2:Np),1) + diag(tt(2:Np),-1);
H(1,1) = H(1,1) + tt(1)*exp(-alfa__L(i)*w);
H(Np,Np) = H(Np,Np) + tt(Np+1)*exp(-alfa__R(i)*w);
B(1) = -2*tt(1)*sinh(alfa__L(i)*w);
psi = Ĥ-1*B;
t = psi(Np)*exp(alfa__R(i)*w);
T(i) = (alfa__R(i)/alfa L(i))*abs(t)2̂; % T is the transmission probability
end

B.3. TMM Code

function [T]=Tunneling__TMM
alfa=zeros(NE,Ns);
for i=1:NE
alfa(i,:)=1e-9*sqrt(2*q*meff__mid.*(UB-E(i)))/hbar; % nm-1
end
% To avoid divide by zero, replace zero entries in alfa by a small number
alfa(alfa==0)=eps;
% See details of Mpro function below
[Mpro11,Mpro12,Mpro21,Mpro22]=Mpro(alfa,meff__mid,w,NE,Ns);
% We divide here meff__B by 9.10953e-31 just for normalization
mr=meff__B/9.10953e-31;
WW11=mr * exp(alfa__R*w*Ns)./(2*alfa__L).*(alfa__L.*Mpro11(:,1)/mr ...
+ Mpro21(:,1)+alfa__R/mr.*(alfa__L/mr.*Mpro12(:,1)+Mpro22(:,1)));
t=1./WW11;
T=(alfa__R./alfa__L).*abs(t).2̂;
function [pro11,pro12,pro21,pro22]=Mpro(alfa,meff__mid,w,NE,Ns)
% To evaluate the product of matrices Pi,Pi+1,KPN
% pro11,pro22 are dimensionless, pro12 is in nm and pro21 is in nm-1
% Initially we should multiply by identity matrix
pro11(:,Ns+1)=ones(NE,1);
pro12(:,Ns+1)=zeros(NE,1);
pro21(:,Ns+1)=zeros(NE,1);
pro22(:,Ns+1)=ones(NE,1);
% loop on different points in the domain starting from right
for i=Ns:-1:1
M11=cosh(alfa(:,i)*w);
M22=M11;
m=meff__mid(i)/9.10953e-31;
M12=- m*sinh(alfa(:,i)*w)./alfa(:,i);
M21=- alfa(:,i).*sinh(alfa(:,i)*w)/m;
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(Continued.)

pro11(:,i)=M11 .* pro11(:,i+1) + M12 .* pro21(:,i+1);
pro12(:,i)=M11 .* pro12(:,i+1) + M12 .* pro22(:,i+1);
pro21(:,i)=M21 .* pro11(:,i+1) + M22 .* pro21(:,i+1);
pro22(:,i)=M21 .* pro12(:,i+1) + M22 .* pro22(:,i+1);
end

B.4. TLM Code

function [T] = Tunneling__TLM
% NN is the no. of points in addition to left and right boundary points
NN=Ns+2;
UU=[0;UB;E__ref__R]; % potential energy array used for TLM
mm=[meff__B;meff__mid;meff__B];
gg=zeros(NN,NE);
Zo=zeros(NN,NE);
for i=1:NE
gg(:,i)=1i*(1e-9)*(sqrt(2*q*mm.*(E(i) - UU)/hbar2̂)); % nm-1
Zo(:,i)=gg(:,i)*hbar./(1i*mm);
end
ZL=Zo(NN,:);
for n=NN-1:-1:2
ZL=Zo(n,:).*((ZL+Zo(n,:).*tanh(gg(n,:)*w))./(Zo(n,:)+ZL.*tanh(gg(n,:)*w)));
end
rho=(ZL-Zo(1,:))./(ZL+Zo(1,:));
T=1-(abs(rho)).2̂;
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